www.my.mainscloud.com

Exam 2010. FurtherLinear algebra. Solutions.

QUESTION 1.

(a) Eucledian division: 68 = 5 * 12 + 8, then 12 = 1 * 8 + 4 and then 8 = 2 * 4 + 0 hence hcf(68, 12) = 4

By doing algorithm in reverse, one finds:

4 = 1 * 12 + (-1) * 8 = (-1) * 68 + 6 * 12 = 6 * 12 + (-1) * 68 hence h = -1 and k = 6.

- (b) The equation 68x + 12y = 4 has solutions in integers because 4 divides 4. The general solution is (-1 + 3n, 6 17n) where n runs through the integers. The equation 68x + 12y = 6 does not have solutions in integers because 4 does not divide 6.
- (c) Chinese remainder theorem. Let m and n two coprime integers. For any integers x and y, there exists a unique [z] in \mathbb{Z}/mn such that $z \equiv x \mod m$ and $z \equiv y \mod n$.

For m = 21 and n = 5, we have 1 = 21 - 4 * 5. We take

$$z = 21 * 7 - 4 * 5 * 3 = 87$$

QUESTION 2.

(a) Second Eucledian division: For any f, g in k[x] with $deg(f) \ge deg(g)$, there exist a unique pair (q, r) such that f = gq + r with deg(r) < deg(g).

Bézout's identity : there exist $h, k \in k[x]$ such that hcf(f,g) = fh + gk.

(b) [see f irreducible if for any g dividing f, g is either constant or equal to f. Unique factorisation theorem: For any monic polynomial f in k[x], there exist monic irreducible polynomials p_1, \ldots, p_r such that

$$f=p_1\cdots p_r$$

If $f = q_1 \cdots q_s$ with q_i monic irreducibles, then s = r and (after reodering) $q_i = p_i$ for all is.

(c) the second In $\mathbb{C}[x]$, $x^3-1=(x-1)(x-\omega)(x-\omega^2)$ where $\omega=e^{\frac{2\pi i}{3}}$. Factors irreducible because they have degree one.

Now $(x-\omega)(x-\omega^2) = x^2 + x + 1$. This is irreducible in $\mathbb{R}[x]$ because has degree two and no real root. (x-1) is irreducible in $\mathbb{R}[x]$ because has degree one. Hence, in $\mathbb{R}[x]$ the factorisation is $x^3 - 1 = (x-1)(x^2 + x + 1)$.

In $\mathbb{F}_3[x]$, $x^2 + x + 1 = (x - 1)^2$ hence the factorisation is $(x - 1)^3$. Factors irreducible because of degree one.

In $\mathbb{F}_2[x]$, $x^2 + x + 1$ is irreducible because degree two and has no root. Hence factorisation is $(x-1)(x^2+x+1)$.

(c) Minimal polynomial m_T : monic polynomial such that $m_T(T) = 0$ and for any non-zero f such that f(T) = 0, $\deg(f) \ge \deg(m_T)$.

Let f be such that f(T) = 0, then $\deg(f) \ge \deg(m_T)$. Eucledian division: $f = qm_T + r$ with $\deg(r) < \deg(m_T)$. By definition of the minimal polynomial r = 0 which implies that m_T divides f.

QUESTION 3. Question 3.
$$V_{b_i}(\lambda_i) = \ker((T-\lambda_i Id)^{b_i}).$$
 (b) Let $v \in V_{b_i}(\lambda_i)$, then $(T-\lambda_i Id)^{b_i}v = 0$. Apply $T-\lambda_i Id$ and get $(T-\lambda_i Id)^{b_i+1}v = 0$. Hence

$$V_{b_i}(\lambda_i) \subseteq V_{b_i+1}(\lambda_i)$$

Let $v \in V_{b_i}(\lambda_i)$, then $(T - \lambda_i Id)^{b_i}v = 0$, hence

$$T(T - \lambda_i Id)^{b_i} v = (T - \lambda_i Id)^{b_i} T(v) = 0$$

, it follows that $T(v) \in V_{b_i}(\lambda_i)$. Hence

$$T(V_{b_i}(\lambda_i)) \subseteq V_{b_i}(\lambda_i)$$

- T is diagonalisable if V has a basis consisting of eigenvectors of T. Criterion: T is diagonalisable if and only if $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_r)$.
- (d) The first matrix one finds $m_A(x) = x(x-2)$. It is diagonalisable over \mathbb{R} and \mathbb{C} and \mathbb{F}_3 but not over \mathbb{F}_2 (over \mathbb{F}_2 $m_A(x) = x^2$).
- (e) Because the minimal polynomial is $x \lambda$, T_1 is diagonalisable and in a certain basis is represented by the diagonal matrix with λ on the diagonal. In fact, this is true in any basis (change of basis is a conjugation by an invertible matrix and a diagonal matrix with same entries on the diagonal commutes with everything).

Same is true for T_2 , so for any basis B, $[T_1]_B = [T_2]_B$

QUESTION 4.

(a) The charactristic polynomial is $(x-3)^2$, the minimal polynomial is the same.

$$V_1(3)$$
 is spanned by $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $V_2(3) = k^2$.

Choose $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

$$A - 3I = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$$

We have $(A - 3I)v_2 = -v_1$. $\{-v_1, v_2\}$ is a Jordan basis. The Jordan normal form is

$$\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$

$$\begin{pmatrix}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{pmatrix}$$

$$\begin{pmatrix}
5 & 0 & 0 \\
0 & 5 & 1 \\
0 & 0 & 5
\end{pmatrix}$$

(iii)

 $\begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$

(iv)

$$\begin{pmatrix}
5 & 1 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{pmatrix}$$

QUESTION 5.

(a) $f(v,w) = \frac{1}{2}(q(v+w) - q(v) - q(w))$ hence q(v) = 0 for all v implies f = 0. Therefore if f is non-zero, there is a v such that $q(v) \neq 0$.

(b) Orthogonal basis: a basis $\{b_1, \ldots, b_n\}$ such that $f(b_i, b_j) = 0$ if $i \neq j$. Existence of orthogonal basis: By induction on $\dim(V)$. If $\dim(V) = 1$, then take any basis (any non-zero vector). Suppose true for all vector spaces of dimension n-1. Let V be of dimension n. If f is zero, then it's matrix is zero and nothing to prove. If f is non-zero, then there exists a vector such that $q(v) \neq 0$. (see question (a)) Now $V = Span(v) \oplus \{v\}^{\perp}$, therefore $\dim\{v\}^{\perp} = n-1$. By induction assumption, one chooses an orthogonal basis $\{b_1, \ldots, b_{n-1}\}$ of $\{v\}^{\perp}$. Then $\{b_1, \ldots, b_{n-1}, v\}$ is an orthogonal basis: $f(b_i, b_j) = 0$ if $i \neq j$ and $f(v, b_i) = 0$ for all i because $b_i \in \{v\}^{\perp}$.

(c) Seen Canonical form: matrix of f the form

$$\begin{pmatrix} I_r & 0 & 0 \\ 0 & -I_s & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

with respect to a certain (necessarily orthogonal) basis. Signature is the pair (r, s) and the rank is r + s. Let $\{b_1, \ldots, b_n\}$ be an orthogonal basis. Number b_i s such that b_1, \ldots, b_r are such that $f(b_i, b_i) > 0$; b_{r+1}, \ldots, b_{r+s} such that $f(b_i, b_i) < 0$ for $i = r + 1, \ldots, r + s$ and $f(b_i, b_i) = 0$ for i > r + s. Then replace the basis by

$$\left\{\frac{b_1}{\sqrt{f(b_1,b_1)}},\ldots,\frac{b_r}{\sqrt{f(b_r,b_r)}},\frac{b_{r+1}}{\sqrt{-f(b_{r+1},b_{r+1})}},\ldots,\frac{b_{r+s}}{\sqrt{-f(b_{r+s},b_{r+s})}},b_{r+s+1},\ldots,b_s\right\}$$

In this basis, f is in the canonical form.

(d) Topicon One finds, by doing row-column operations

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

The rignature is (2,0), rank is two.

QUESTION 6.

(a) The adjoint T^* is a linear map $T^*: V \longrightarrow V$ such that

$$< Tv, w > = < v, T^*w >$$

for all v, w in V.

4

If T' is another adjoint, then for all v, w

$$\langle v, T^*w \rangle = \langle v, T'w \rangle$$

hence for all v, w

$$\langle v, (T^* - T')w \rangle = 0$$

Set $v = (T^* - T')w$, then

$$||(T^* - T')w|| = 0$$

for all w. It follows that $T^* = T'$.

(b) Let λ be an eigenvalue and v an eigenvactor : $Tv = \lambda v$ and $v \neq 0$. Then

$$< Tv, v> = \lambda < v, v> = < v, Tv> \ \ \text{because} \ T = T^* = \overline{\lambda} < v, v>$$

As $v \neq 0$, $\langle v, v \rangle \neq 0$ (because it is an inner product), it follows that $\lambda = \overline{\lambda}$ hence λ is real.

Let v and w be eigenvactors corresponding to distinct eigenvalues λ and μ . Then

$$< Tv, w> = \lambda < v, w> = < v, Tw> = \overline{mu} < v, w> = \mu < v, w>$$

(we have used that μ is real). It follows that $(\lambda - \mu) < v, w >= 0$ and $\lambda - \mu \neq 0$, hence < v, w >= 0.

(c) Tunspen For any v we have

$$\langle Tv, Tv \rangle = \langle v, T^*Tv \rangle = 0$$

hence Tv = 0 for any v, hence T = 0.